πŸ“•
PRML
  • PRML study
  • Chapter-1 Introduction
    • 1.1 Example: Polynomial Curve Fitting
    • 1.2 Probability Theory
    • 1.3 Model Selection
    • 1.4 The Curse of dimensionality
    • 1.5 Decision Theory
    • 1.6 Information Theory
    • a.1 From Set Theory to Probability Theory
  • Chapter-2 Probability Distributions
    • 2.1 Binary Variables
    • 2.2 Multinomial Variables
    • 2.3 Gaussian Distribution
    • 2.4 The Exponential Family
    • 2.5 Nonparametric Methods
  • Chapter-3 Linear Models
    • 3.1 Linear Basis Function Models
    • 3.2 The Bias-Variance Decomposition
    • 3.3 Bayesian Linear Regression
    • 3.4 Bayesian Model comparison
    • 3.5 The Evidence Approximation
    • 3.6 Limitations of Fixed Basis Functions
  • Chapter-4 Linear Models for Classification
    • 4.1 Discriminant Functions
    • 4.2 Probabilistic Generative Models
    • 4.3 Probabilistic Discriminative Models
    • 4.4 The Laplace Approximation
    • 4.5 Bayesian Logistic Regression
  • Chapter-5 Neural Networks
    • 5.1 Feed-forward network Function
    • 5.2 Network Training
    • 5.3 Error Backpropagation
    • 5.4 The Hessian Matrix
    • 5.5 Regularization in Neural Networks
    • 5.6 Mixture Density Networks
    • 5.7 Bayesian Neural Networks
Powered by GitBook
On this page

Was this helpful?

PRML study

NextChapter-1 Introduction

Last updated 5 years ago

Was this helpful?

ν¬λ¦¬μŠ€ν† νΌ λΉ„μˆμ˜ μ±… "νŒ¨ν„΄ 인식과 기계 ν•™μŠ΅(Pattern Recognition and Machine Learning)" 의 μ›μ„œλ₯Ό κ³΅λΆ€ν•˜κ³ , 그에 ν•„μš”ν•œ μ½”λ“œμ™€ μˆ˜μ‹μ„ μ •λ¦¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.

  • μ›μ„œ λ‹€μš΄λ‘œλ“œ:

  • μž‘μ„±μž: μž₯μ§€μˆ˜()

  • λΈ”λ‘œκ·Έ:

  • GitBook:

Update

link
simonjisu
https://simonjisu.github.io
https://soo.gitbook.io/prml/