📕
PRML
  • PRML study
  • Chapter-1 Introduction
    • 1.1 Example: Polynomial Curve Fitting
    • 1.2 Probability Theory
    • 1.3 Model Selection
    • 1.4 The Curse of dimensionality
    • 1.5 Decision Theory
    • 1.6 Information Theory
    • a.1 From Set Theory to Probability Theory
  • Chapter-2 Probability Distributions
    • 2.1 Binary Variables
    • 2.2 Multinomial Variables
    • 2.3 Gaussian Distribution
    • 2.4 The Exponential Family
    • 2.5 Nonparametric Methods
  • Chapter-3 Linear Models
    • 3.1 Linear Basis Function Models
    • 3.2 The Bias-Variance Decomposition
    • 3.3 Bayesian Linear Regression
    • 3.4 Bayesian Model comparison
    • 3.5 The Evidence Approximation
    • 3.6 Limitations of Fixed Basis Functions
  • Chapter-4 Linear Models for Classification
    • 4.1 Discriminant Functions
    • 4.2 Probabilistic Generative Models
    • 4.3 Probabilistic Discriminative Models
    • 4.4 The Laplace Approximation
    • 4.5 Bayesian Logistic Regression
  • Chapter-5 Neural Networks
    • 5.1 Feed-forward network Function
    • 5.2 Network Training
    • 5.3 Error Backpropagation
    • 5.4 The Hessian Matrix
    • 5.5 Regularization in Neural Networks
    • 5.6 Mixture Density Networks
    • 5.7 Bayesian Neural Networks
Powered by GitBook
On this page

Was this helpful?

Chapter-2 Probability Distributions

2.1 Binary Variables2.2 Multinomial Variables2.3 Gaussian Distribution2.4 The Exponential Family2.5 Nonparametric Methods
Previousa.1 From Set Theory to Probability TheoryNext2.1 Binary Variables

Last updated 5 years ago

Was this helpful?