a.1 From Set Theory to Probability Theory

Set Theory

์ตœ์„ฑ์ค€๋‹˜์˜ ๋ฒ ์ด์ง€์•ˆ ๋”ฅ๋Ÿฌ๋‹ ์ž๋ฃŒ๋ฅผ ๋งŽ์ด ์ฐธ๊ณ ํ–ˆ์Šต๋‹ˆ๋‹ค.

์ง‘ํ•ฉ๋ก (set theory)์€ ์ถ”์ƒ์  ๋Œ€์ƒ๋“ค์˜ ๋ชจ์ž„์ธ ์ง‘ํ•ฉ์„ ์—ฐ๊ตฌํ•˜๋Š” ์ˆ˜ํ•™ ์ด๋ก ์ด๋‹ค. ๊ธฐ๋ณธ์ ์ธ ๊ฐœ๋…์€ ์œ„ํ‚ค๋งํฌ๋ฅผ ๋‹ฌ์•„ ๋‘์—ˆ๋‹ค.

  • ์ง‘ํ•ฉ(set): ํŠน์ • ์กฐ๊ฑด์— ๋งž๋Š” ์›์†Œ๋“ค์˜ ๋ชจ์ž„

  • ์›์†Œ(element): ์ง‘ํ•ฉ์„ ์ด๋ฃจ๋Š” ๊ฐœ์ฒด, ์›์†Œ aa๊ฐ€ ์ง‘ํ•ฉ AA์— ์†ํ•  ๊ฒฝ์šฐ aโˆˆAa \in A๋ผ๊ณ  ํ‘œ๊ธฐํ•œ๋‹ค.

  • ๋ถ€๋ถ„ ์ง‘ํ•ฉ(subset): ์ง‘ํ•ฉ A์˜ ๋ชจ๋“  ์›์†Œ๊ฐ€ ๋‹ค๋ฅธ ์ง‘ํ•ฉ B์—๋„ ์†ํ•˜๋Š” ๊ด€๊ณ„์ผ ๊ฒฝ์šฐ, A๋Š” B์˜ "๋ถ€๋ถ„ ์ง‘ํ•ฉ"์ด๋ผ๊ณ  ํ•œ๋‹ค.

  • ์ „์ฒด์ง‘ํ•ฉ(universal set): ๋ชจ๋“  ๋Œ€์ƒ(์ž๊ธฐ ์ž์‹ ๋„ ํฌํ•จ)์„ ์›์†Œ๋กœ ํฌํ•จํ•˜๋Š” ์ง‘ํ•ฉ

  • ์ง‘ํ•ฉ์˜ ์—ฐ์‚ฐ(set operations)

  • ์„œ๋กœ์†Œ ์ง‘ํ•ฉ(disjoint set): ๊ณตํ†ต ์›์†Œ๊ฐ€ ์—†๋Š” ๋‘ ์ง‘ํ•ฉ, AโˆฉB=โˆ…A \cap B = \emptyset

  • ์ง‘ํ•ฉ์˜ ๋ถ„ํ• (partition of a set): ์ง‘ํ•ฉ์˜ ์›์†Œ๋“ค์„ ๋น„๊ณต ๋ถ€๋ถ„ ์ง‘ํ•ฉ๋“ค์—๊ฒŒ ๋‚˜๋ˆ ์ฃผ์–ด, ๋ชจ๋“  ์›์†Œ๊ฐ€ ๊ฐ์ž ์ •ํ™•ํžˆ ํ•˜๋‚˜์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์— ์†ํ•˜๊ฒŒ๋” ํ•˜๋Š” ๊ฒƒ

    • ์˜ˆ์‹œ: A={1,2,3,4}โ†’partitionย ofย setย A={{1,2},{3},{4}}A = \{ 1, 2, 3, 4 \} \rightarrow \text{partition of set A} = \{ \{1, 2\}, \{3\}, \{4\} \}

  • ๋ฉฑ์žกํ•ฉ(power set of set A, โ‰”2A\coloneqq 2^A): ์ฃผ์–ด์ง„ ์ง‘ํ•ฉ์˜ ๋ชจ๋“  ๋ถ€๋ถ„ ์ง‘ํ•ฉ๋“ค๋กœ ๊ตฌ์„ฑ๋œ ์ง‘ํ•ฉ(the set of all the subsets)

    • ์˜ˆ์‹œ: A={1,2,3}โ†’powerย setย ofย 2A={โˆ…,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}A = \{ 1, 2, 3 \} \rightarrow \text{power set of 2}^A = \{ \emptyset, \{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\} \}

  • ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ(Cardinality): ์ง‘ํ•ฉ์˜ "์›์†Œ ๊ฐœ์ˆ˜"์— ๋Œ€ํ•œ ์ฒ™๋„, โˆฃAโˆฃ\vert A \vert๋กœ ํ‘œ๊ธฐ ํ•œ๋‹ค. ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ์šฉ์–ด๋กœ finite, infinite, countable, uncountable, denumerable(countably infinite)๊ฐ€ ์žˆ๋‹ค.

    • ๊ฐ€์‚ฐ ์ง‘ํ•ฉ(countable set): ๊ด€์‹ฌ์žˆ๋Š” ์ง‘ํ•ฉ๊ณผ ์ž์—ฐ์ˆ˜์˜ ์ง‘ํ•ฉ์œผ๋กœ ์ผ๋Œ€์ผ ํ•จ์ˆ˜(one-to-one function)๊ด€๊ณ„๊ฐ€ ์กด์žฌํ•˜๋ฉด, ๊ทธ ์ง‘ํ•ฉ์€ ๊ฐ€์‚ฐ ์ง‘ํ•ฉ์ด๋‹ค. ํŠนํžˆ, ์ž์—ฐ์ˆ˜, ์ •์ˆ˜, ์œ ๋ฆฌ์ˆ˜์™€ ๊ฐ™์ด ์…€์ˆ˜ ์žˆ๋Š” ๋ฌดํ•œ ์ง‘ํ•ฉ์˜ ๊ฒฝ์šฐ, ๊ฐ€์‚ฐ ๋ฌดํ•œ(countable infinite)์ด๋‚˜ ๊ฐ€๋ถ€๋ฒˆ ์ง‘ํ•ฉ(denumerable set)์ด๋ผ๊ณ  ํ•œ๋‹ค.

    • ๋น„๊ฐ€์‚ฐ ์ง‘ํ•ฉ(uncountable set): ๊ฐ€์‚ฐ ์ง‘ํ•ฉ์ด ์•„๋‹Œ ์ง‘ํ•ฉ, ์‹ค์ˆ˜๋Š” ๋น„๊ฐ€์‚ฐ ์ง‘ํ•ฉ

Function

1.2.0.1
  • ํ•จ์ˆ˜/์‚ฌ์ƒ(function/mapping): ์ฒซ ๋ฒˆ์งธ ์ง‘ํ•ฉ์˜ ์ž„์˜์˜ ํ•œ ์›์†Œ๋ฅผ ๋‘ ๋ฒˆ์งธ ์ง‘ํ•ฉ์˜ ์˜ค์ง ํ•œ ์›์†Œ์— ๋Œ€์‘์‹œํ‚ค๋Š” ์ดํ•ญ ๊ด€๊ณ„์ด๋‹ค. ์ž…๋ ฅ์ด ๋˜๋Š” ์ง‘ํ•ฉ UU๋ฅผ ์ •์˜์—ญ(domain), ์ถœ๋ ฅ์œผ๋กœ ๋Œ€์‘๋˜๋Š” ์ง‘ํ•ฉ VV๋ฅผ ๊ณต์—ญ(codomain)์ด๋ผ๊ณ  ํ•œ๋‹ค.

    f:Udomainโ†’Vcodomainf: \underset{domain}{U} \rightarrow \underset{codomain}{V}

  • ์ƒ(image): domain์˜ ์›์†Œ(ํ˜น์€ ๋ถ€๋ถ„ ์ง‘ํ•ฉ)๊ฐ€ ๋Œ€์‘ํ•˜๋Š” codomain์˜ ์›์†Œ(ํ˜น์€ ์ง‘ํ•ฉ)

    f(x)โˆˆV,xโˆˆUorf(A)={f(x)โˆฃxโˆˆA}โІV,AโІUf(x) \in V, x \in U \quad \text{or} \quad f(A) = \{ f(x) \vert x \in A \} \subseteq V, A \subseteq U

    ๋ฐ˜๋Œ€๋กœ codomain์˜ ์›์†Œ์— ๋Œ€์‘ํ•˜๋Š” domain์˜ ์›์†Œ๋ฅผ ์—ญ์ƒ(inverse image)์ด๋ผ๊ณ  ํ•œ๋‹ค(์›์†Œ์˜ ์—ญ์ƒ์€ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์ด๋ผ๋Š” ๊ฒƒ์„ ์ฃผ์˜).

    fโˆ’1(y)={xโˆˆUโˆฃf(x)โˆˆV}โІVorfโˆ’1(B)={xโˆฃf(x)โˆˆB}โІU,BโІVf^{-1}(y) = \{ x \in U \vert f(x) \in V \} \subseteq V \quad \text{or} \quad f^{-1}(B) = \{ x \vert f(x) \in B \} \subseteq U, B \subseteq V

  • ์น˜์—ญ(range): ํ•จ์ˆ˜์˜ ๋ชจ๋“  ์ถœ๋ ฅ๊ฐ’์˜ ์ง‘ํ•ฉ, ์น˜์—ญ์€ ๊ณต์—ญ(codomain)์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์ด๋‹ค.

1.2.0.2

Measure Theory

์ธก๋„(measure) ์ด๋ž€ ํŠน์ • ๋ถ€๋ถ„ ์ง‘ํ•ฉ์— ๋Œ€ํ•ด ์ผ์ข…์˜ "ํฌ๊ธฐ"๋ฅผ ๋ถ€์—ฌํ•˜๋ฉฐ, ๊ทธ ํฌ๊ธฐ๋ฅผ ๊ฐ€์‚ฐ๊ฐœ๋กœ ์ชผ๊ฐœ์–ด ๊ฒŒ์‚ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ํ•จ์ˆ˜๋‹ค. ์ธก๋„๊ฐ€ ๋ถ€์—ฌ๋œ ์ง‘ํ•ฉ์„ ์ธก๋„ ๊ณต๊ฐ„(measure space)๋ผ๊ณ  ํ•˜๋ฉฐ, ์ด๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ์ˆ˜ํ•™ ๋ถ„์•ผ๋ฅผ ์ธก๋„๋ก (measure theory)๋ผ๊ณ  ํ•œ๋‹ค.

๊ธฐ๋ณธ์ ์œผ๋กœ ์ „์ฒด์ง‘ํ•ฉ(universial set) UU๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ์ธก๋„(measure)๋Š” UU์˜ ๋ถ€๋ถ„์ง‘ํ•ฉ(subset)์— ๋น„์Œ์ˆ˜์ธ ์‹ค์ˆ˜๋ฅผ ํ• ๋‹นํ•œ๋‹ค. ์šฐ์„  ๋ช…ํ™•ํžˆ measure๋ฅผ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์š”ํ•œ ๊ฒƒ๋“ค์„ ์ •์˜ํ•ด๋ณธ๋‹ค.

  • set function: ์ง‘ํ•ฉ(set)์— ๋Œ€ํ•ด ์–ด๋–ค ์ˆซ์ž๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ํ•จ์ˆ˜(ex, cardinality, length, area), ์ฆ‰ ์ž…๋ ฅ์„ ์ง‘ํ•ฉ, ์ถœ๋ ฅ์€ ์ˆซ์ž๊ฐ€ ๋˜๋Š” ํ•จ์ˆ˜

  • ฯƒ\sigma-field B\mathcal{B}: ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์ „์ฒด์ง‘ํ•ฉ UU์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ ๋ชจ์ŒB\mathcal{B}๋ฅผ ฯƒ\sigma-field ๋ผ๊ณ  ํ•œ๋‹ค(ฯƒโˆ’algebra\sigma-\text{algebra}์™€ ๊ฐ™์€ ๋ง).

    1. โˆ…โˆˆB\emptyset \in \mathcal{B}, empty set is included

    2. BโˆˆBโ‡’BcโˆˆBB \in \mathcal{B} \Rightarrow B^{c} \in \mathcal{B}, closed under set complement

    3. BiโˆˆBโ‡’โ‹ƒi=1โˆžBiโˆˆBB_i \in \mathcal{B} \Rightarrow \bigcup_{i=1}^{\infty}B_i \in \mathcal{B}, closed under countable union

  • ฯƒ\sigma-field๋Š” measure๋ฅผ ๋ถ€์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์†Œ ๋‹จ์œ„๊ฐ€ ๋œ๋‹ค. ๋งŒ์•ฝ ์–ด๋–ค ์›์†Œ๊ฐ€ ฯƒ\sigma-field์— ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด, ๊ทธ ์›์†Œ๋Š” ์ธก์ •ํ•  ์ˆ˜ ์—†๋‹ค.

  • ฯƒ\sigma-field ํŠน์„ฑ

    1. UโˆˆBU \in \mathcal{B}

    2. BiโˆˆBโ‡’โ‹‚i=1โˆžBiโˆˆBB_i \in \mathcal{B} \Rightarrow \bigcap_{i=1}^{\infty}B_i \in \mathcal{B}, closed under countable intersection

    3. 2U2^U, power set of U ๋Š” ๊ฐ€์žฅ ๋‹จ์œ„๊ฐ€ ์ž์ž˜์ž์ž˜ ํ•˜๊ฒŒ ๋งŒ๋“  ฯƒ\sigma-field

    4. B\mathcal{B} ๋Š” ์œ ํ•œํ•˜๊ฑฐ๋‚˜ ๋น„๊ฐ€์‚ฐ ๋‘˜ ์ค‘ ํ•˜๋‚˜๋‹ค, ๊ฐ€์‚ฐ ๋ฌดํ•œ/๊ฐ€๋ฒˆ๋ถ€(countable infinite/denumerable)๊ฐ€ ๋  ์ˆ˜ ์—†๋‹ค.

    5. B,Cย areย ฯƒ-fieldโ‡’BโˆฉCย isย ฯƒ-field,ย butย BโˆชCย isย not\mathcal{B}, \mathcal{C} \text{ are } \sigma \text{-field} \Rightarrow \mathcal{B} \cap \mathcal{C} \text{ is } \sigma \text{-field, but } \mathcal{B} \cup \mathcal{C} \text{ is not}

  • ๊ฐ€์ธก ๊ณต๊ฐ„(measurable space): ๊ฐ„๋‹จํžˆ ๋งํ•ด์„œ, ์–ด๋–ค ์ง‘ํ•ฉ UU๊ฐ€ ์žˆ๊ณ  ๊ทธ ์ง‘ํ•ฉ์˜ ๋ถ€๋ถ„์ง‘ํ•ฉ์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ ฯƒ\sigma-field์— measure๋ฅผ ๋ถ€์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ (U,B)(U, \mathcal{B})

์ธก๋„(measure)๋ฅผ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ์ค€๋น„๋Š” ๋‹ค ๋˜์—ˆ๋‹ค. ์ •์˜๋ฅผ ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • measure ฮผ\mu๋Š” ๊ฐ€์ธก ๊ณต๊ฐ„(measureable space)-(U,B)(U, \mathcal{B})์—์„œ ์ •์˜๋œ set function, ฮผ:Bโ†’[0,โˆž]\mu: \mathcal{B}\rightarrow [0, \infty] ์ด๋‹ค.

    1. ฮผ(โˆ…)=0\mu(\emptyset) = 0

    2. For disjoint BiB_i and Bjโ‡’ฮผ(โ‹ƒi=1โˆžBi)=โˆ‘i=1โˆžฮผ(Bi)B_j \Rightarrow \mu(\bigcup_{i=1}^{\infty}B_i) = \sum_{i=1}^{\infty} \mu(B_i), countable addivitity

  • ์ฆ‰, ๊ฐ€์ธก ๊ณต๊ฐ„(measurable space)-(U,B)(U, \mathcal{B})๊ณผ measure ฮผ\mu๊ฐ€ ํ•˜๋‚˜์˜ ์ธก๋„ ๊ณต๊ฐ„(measure space)-(U,B,ฮผ)(U, \mathcal{B}, \mu) ๋ฅผ ๊ตฌ์„ฑํ•˜๊ฒŒ ๋œ๋‹ค.

Probability Theory

1.2.0.2

๊ทธ๋ฆผ 1.2.0.2์—์„œ ฮฉ\Omega๋Š” ํ‘œ๋ณธ ๊ณต๊ฐ„(sample space)์ด๋ผ๊ณ  ํ•œ๋‹ค. ํ‘œ๋ณธ ๊ณต๊ฐ„์—์„œ ์ •์˜๋˜๋Š” ์ธก๋„(measure)๋Š” ๋Œ€๋ฌธ์ž P๋กœ ์ž‘์„ฑํ•œ๋‹ค. ๋ฌด์Šจ ๋œป์ธ์ง€๋Š” ๋‹ค์Œ์„ ๊ณ„์† ์ฝ์–ด๋ณธ๋‹ค.

  • ํ™•๋ฅ ์„ ์ด์•ผ๊ฐ€ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž„์˜์  ์‹คํ—˜(random experiment)๋ฅผ ์ž˜ ์ •์˜ ํ•ด์•ผํ•œ๋‹ค.

  • ๊ฒฐ๊ณผ(outcomes)๋Š” ์ž„์˜์  ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•˜๋ฉฐ ๋”์ด์ƒ ๋‚˜๋ˆŒ์ˆ˜ ์—†๋Š” ๋ชจ๋“  ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š” ํ˜„์ƒ๋“ค์„ ์ผ์ปซ๋Š” ๋ง์ด๋‹ค.

  • ์‚ฌ๊ฑด(event)์€ ํ™•๋ฅ ์ด ๋ถ€์—ฌ๋œ ์ž„์˜์  ์‹คํ—˜์—์„œ ๋ฐœ์ƒํ•œ ๊ฒฐ๊ณผ(outcomes)์˜ ์ง‘ํ•ฉ์ด๋ฉฐ, ํ‘œ๋ณธ ๊ณต๊ฐ„(sample space)์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์ด๋‹ค.

  • ํ‘œ๋ณธ(sample point) ww๋Š” ํ‘œ๋ณธ ๊ณต๊ฐ„(sample space)์—์„œ ์ž„์˜์  ์‹คํ—˜์„ ํ†ตํ•ด ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๊ณผ(outcome)๋ฅผ ๋งํ•œ๋‹ค.

  • ํ‘œ๋ณธ ๊ณต๊ฐ„(sample space) ฮฉ\Omega์€ ๋ชจ๋“  sample point ์˜ ์ง‘ํ•ฉ์ด๋‹ค.

  • ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณต์ •ํ•œ ์ •์œก๋ฉด์ฒด ์ฃผ์‚ฌ์œ„๋ฅผ ๋žœ๋ค์œผ๋กœ ๋˜์ง€๋Š” ์‹คํ—˜์ด ์žˆ๋‹ค(random experiment). ๊ฒฐ๊ณผ(outcomes)๋กœ ํ•œ ๋ฉด์— 1~6๊นŒ์ง€ ์ˆซ์ž๊ฐ€ ๋ณด์ธ๋‹ค. 7์€ ๋‚˜์˜ฌ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•œ ๊ฒฐ๊ณผ(outcome)์ด ์•„๋‹ˆ๋‹ค. ๊ทธ๋ฆผ 1.2.0.2 ์˜ ๊ฐ ์ ๋“ค๋กœ ํ‘œํ˜„๋˜์–ด ์žˆ๋‹ค. ์ด ๊ทธ๋ฆผ์€ ๋ชจ๋“  ์ ๋“ค์ด ํ‘œ๋ณธ ๊ณต๊ฐ„ ฮฉ\Omega ๋‚ด์— ์ •์˜ ๋˜์–ด ์žˆ์Œ์œผ๋กœ, ๋ชจ๋“  ์ ๋“ค์€ sample point์ด์ž ์ด ์ž„์˜์  ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ "์ฃผ์‚ฌ์œ„๋ฅผ ๊ตด๋ ธ์„ ๋•Œ, ๋ณด์ด๋Š” ๋ฉด์ด ์ง์ˆ˜ ์ธ ๊ฒฝ์šฐ", ์ฆ‰ A๋กœ ํ‘œ๊ธฐ๋œ ฮฉ\Omega์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์€ ์‚ฌ๊ฑด(event)์ด๋‹ค.

์ด์ œ ํ™•๋ฅ ์˜ ๋ช…ํ™•ํ•œ ์ •์˜๋ฅผ ๋‚ด๋ ค๋ณธ๋‹ค.

  • ํ™•๋ฅ  PP ๋Š” ๊ฐ€์ธก ๊ณต๊ฐ„(measureable space)-(ฮฉ,A)(\Omega, \mathcal{A}) ์—์„œ ์ •์˜๋˜๋Š” set function P:Aโ†’[0,1]P : \mathcal{A} \rightarrow [0, 1] ์ธ๋ฐ ๋‹ค์Œ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•œ๋‹ค(๊ธฐํ˜ธ๊ฐ€ ์•ฝ๊ฐ„ ๋‹ค๋ฅธ๋ฐ, A\mathcal{A}๋Š” ฯƒ\sigma-field, ์ผ๋ฐ˜ ๋Œ€๋ฌธ์ž AA๋Š” ฯƒ\sigma-field์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์ž„์œผ๋กœ ์ž˜ ๊ตฌ๋ถ„ํ•ด์•ผ ํ•จ).

    1. P(โˆ…)=0P(\emptyset) = 0

    2. P(A)โ‰ฅ0,โˆ€AโІฮฉP(A) \geq 0, \forall A \subseteq \Omega

    3. For disjoint sets AiA_i and Ajโ‡’ฮผ(โ‹ƒi=1โˆžBi)=โˆ‘i=1โˆžฮผ(Bi)A_j \Rightarrow \mu(\bigcup_{i=1}^{\infty}B_i) = \sum_{i=1}^{\infty} \mu(B_i), countable addivitity

    4. P(ฮฉ)=1P(\Omega) = 1

  • ์‚ฌ์‹ค์ƒ ์ธก๋„์˜ ์ •์˜์—์„œ 2, 4๋ฒˆ ํ•ญ๋ชฉ์ด ์ถ”๊ฐ€๋œ ๊ฒƒ์ด๋‹ค. ์ฆ‰, ํ™•๋ฅ ์€ ํ‘œ๋ณธ ๊ณต๊ฐ„์—์„œ ์ •์˜๋œ ์ธก๋„(measure) ํ˜น์€ set function ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๊ฒ ๋‹ค.

์ง€๊ธˆ๊นŒ์ง€ ํ™•๋ฅ ์€ ๊ฐ€์ธก ๊ณต๊ฐ„์—์„œ ์ •์˜๋œ ๊ฒƒ์ด๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ์–ด๋–ค ์‚ฌ๊ฑด AA์— ์–ด๋–ป๊ฒŒ ํ™•๋ฅ ์„ ๋ถ€์—ฌํ• ๊นŒ? ํ•ด๋‹ต์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ž„์˜์  ์‹คํ—˜์—์„œ ๋‚˜์˜จ ๊ฒฐ๊ณผ๋กœ ๊ตฌ์„ฑ๋œ ํ‘œ๋ณธ ๊ณต๊ฐ„ ฮฉ\Omega๊ฐ€ ์žˆ๊ณ , ๊ทธ ํ‘œ๋ณธ ๊ณต๊ฐ„์—์„œ ๋ฐœ์ƒํ•œ ์‚ฌ๊ฑด AA์— ํ•ด๋‹นํ•˜๋Š” ํ™•๋ฅ ์„ ๋ถ€์—ฌํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ํ™•๋ฅ  ํ• ๋‹น ํ•จ์ˆ˜(probability allocation function)์ด ๋“ฑ์žฅํ•œ๋‹ค.

  • probability allocation function

    • probability mass function: ์ด์‚ฐ(discrete) ํ‘œ๋ณธ ๊ณต๊ฐ„ ฮฉ\Omega์ผ ๋•Œ, p:ฮฉโ†’[0,1]p: \Omega \rightarrow [0, 1] such that โˆ‘wโˆˆฮฉp(w)=1\sum_{w\in \Omega} p(w)=1 and P(A)=โˆ‘wโˆˆAp(w)P(A) = \sum_{w \in A} p(w)

    • probability density function: ์—ฐ์†(continuous) ํ‘œ๋ณธ ๊ณต๊ฐ„ ฮฉ\Omega์ผ ๋•Œ, p:ฮฉโ†’[0,โˆž)p: \Omega \rightarrow [0, \infty) such that โˆซwโˆˆฮฉf(w)dw=1\int_{w\in \Omega} f(w)dw=1 and P(A)=โˆซwโˆˆAf(w)dwP(A) = \int_{w \in A} f(w)dw

ํ™•๋ฅ  ๊ธฐํƒ€ ๋ถ€๋ถ„

  • ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ (conditional probability) P(AโˆฃB)โ‰œP(AโˆฉB)P(B)P(A\vert B) \triangleq \dfrac{P(A \cap B)}{P(B)}

  • ํ™•๋ฅ ์˜ ์—ฐ์‡„ ๋ฒ•์น™(chain rule): P(AโˆฉB)=P(AโˆฃB)P(B)P(A \cap B) = P(A \vert B) P(B)

  • ์ „์ฒด ํ™•๋ฅ ์˜ ๋ฒ•์น™(total probability law): P(A)=P(AโˆฉB)+P(AโˆฉBc)=P(AโˆฃB)P(B)+P(AโˆฃBc)P(Bc)P(A) = P(A \cap B) + P(A \cap B^c) = P(A \vert B) P(B) + P(A \vert B^c) P(B^c)

  • ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ(Bayes' rule): P(BโˆฃA)=P(BโˆฉA)P(A)=P(AโˆฉB)P(A)=P(AโˆฃB)P(B)P(A)P(B \vert A) = \dfrac{P(B \cap A)}{P(A)} = \dfrac{P(A \cap B)}{P(A)} = \dfrac{P(A \vert B)P(B)}{P(A)}

    • P(AโˆฃB)P(A \vert B): likelihood

    • P(BโˆฃA)P(B \vert A): posterior

    • P(B)P(B): prior

  • ๋…๋ฆฝ ์‚ฌ๊ฑด(independent events): P(AโˆฉB)=P(A)P(B)P(A \cap B) = P(A) P(B) ๋งŒ ๋งŒ์กฑํ•˜๋ฉด independentํ•œ ๊ฒƒ์ด๋‹ค(โ‰ \neq disjoint, mutually exclusive)

    • ์˜ˆ์‹œ:

      1.2.0.4

Random Variable

  • ํ™•๋ฅ  ๋ณ€์ˆ˜(Random Variable)๋Š” ์ธก์ •๊ฐ€๋Šฅํ•œ(measureable) ํ™•๋ฅ  ๊ณต๊ฐ„(Probability space)-(ฮฉ,A,P)(\Omega, \mathcal{A}, P)๊ณผ ๋ณด๋  ๊ฐ€์ธก ๊ณต๊ฐ„(Borel measureable space, ๋ณดํ†ต ์‹ค์ˆ˜๋“ค์˜ ์ง‘ํ•ฉ์„ ๊ฐ€๋ฅดํ‚ด)-(R,B)(\Bbb{R}, \mathcal{B})์—์„œ ์ •์˜๋˜๋Š” ํ•จ์ˆ˜๋‹ค.

    X:ฮฉโ†’Rย suchย thatย โˆ€BโˆˆB,Xโˆ’1(B)โˆˆAX: \Omega \rightarrow \Bbb{R} \text { such that } \forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}

    1.2.0.5

  • ์—ฌ๊ธฐ์„œ ๋žœ๋ค(random)์ด๋ž€ ํ™•๋ฅ  ๊ณต๊ฐ„์˜ ํ‘œ๋ณธ ๊ณต๊ฐ„(sample space, ฮฉ\Omega)์—์„œ ํ•˜๋‚˜๋ฅผ ์ž„์˜๋กœ ๋ฝ‘๋Š” ๊ณผ์ •์„ ๊ฐ€๋ฅดํ‚จ๋‹ค. ๊ทธ๋ฆผ 1.2.0.5์™€ ๊ฐ™์ด "์ˆซ์ž 4๊ฐ€ ๊ด€์ธก๋œ๋‹ค"๋ผ๋Š” ๊ฒƒ์„ ํ’€์–ด์„œ ์ด์•ผ๊ธฐํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ํ™•๋ฅ  ๊ณต๊ฐ„์˜ ํ‘œ๋ณธ ๊ณต๊ฐ„์—์„œ ์ž„์˜๋กœ ๋ฝ‘์€ ํ‘œ๋ณธ{4}๋ฅผ ํ™•๋ฅ  ๋ณ€์ˆ˜(XX)์— ์ž…๋ ฅํ–ˆ์„ ๋•Œ, ์‹ค์ˆ˜ ๊ณต๊ฐ„(R\Bbb{R})์— ํ•ด๋‹นํ•˜๋Š” ์ˆซ์ž๊ฐ’ 4๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๊ณผ์ •์ด๋‹ค.

  • ์ด์‚ฐ ํ™•๋ฅ  ๋ณ€์ˆ˜()

ํ™•๋ฅ  ๋ฐ€๋„ ํ•จ์ˆ˜(Probability density function) ์ƒ๊ด€๋ถ„์„(Correlation analysis)

Last updated

Was this helpful?